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Abstract: Regional seismic risk analysis involves assessing the probability and evaluating the socioeconomic 
impact of various seismic events. Accounting for the uncertainty in future earthquake characteristics requires 
evaluating a large number of events. However, assessments of infrastructure functionality loss and the ensuing 
socioeconomic impact are computationally intensive, making brute-force simulation approaches impractical. 
Previous research has tackled this problem by selecting a limited number of earthquake scenarios to represent 
the complete seismic hazard. However, these approaches only consider the marginal distributions of ground-
motion intensities across a region and fail to account for correlations between different intensity measures at 
different locations. Neglecting these spatial and inter-intensity measure correlations may lead to 
underestimating the seismic risk in a given area. This work proposes a formulation that incorporates spatial 
and inter-intensity measure correlations when selecting earthquake scenarios. Additionally, we develop an 
open-source Python package allowing users to implement the proposed methodology. Furthermore, we 
provide an illustrative case study showcasing the application of our proposed method. By facilitating expanded 
and risk-consistent studies of the impact of infrastructure networks on regional seismic risk and resilience, our 
work can potentially enhance the understanding of seismic risks and inform effective risk management 
strategies. 

1. Introduction 
Regional seismic risk analysis involves assessing the probability and evaluating the socioeconomic impact of 
various seismic events. However, earthquakes are low-probability and high-consequence events, and there is 
high uncertainty associated with their occurrence, as well as the consequences on society given the 
occurrence. Governments, communities, and industrial entities such as catastrophe insurers often need to 
make decisions about mitigating and managing earthquake risk. Making such decisions while accounting for 
the uncertainty in future earthquake characteristics and the associated societal impacts requires evaluating a 
large number of earthquake scenarios. Many types of earthquake impacts are of interest to different 
stakeholders, for example, the damage to structures, loss of functionality in critical infrastructure, societal 
impacts such as casualties, health, and shelter loss, as well as the economic losses to individuals, businesses, 
and economies (Rose and Lim 2002; Chang 2003). However, evaluating these consequences is 
computationally intensive, and in the lack of closed-form formulations, simulations remain the widely used 
solution (Ebel and Kafka 1999; Crowley and Bommer 2006). However, running many simulations is often 
infeasible, and probabilistic results are difficult to communicate to the public (Corotis et al. 2012). So, most 
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studies tend not to account for seismic hazard uncertainty and focus on a single or handful of earthquake 
scenarios (Chang and Nojima 2001; Elnashai et al. 2008; Tabandeh et al. 2022). 

Uncertainty quantification literature indicates that the hazard models contribute a majority of uncertainty in 
seismic risk (Ellingwood and Kinali 2009). So, the challenge in seismic risk analyses is to account for hazard 
uncertainty while minimizing the required impact assessment simulations. Previous research has tackled this 
problem by selecting a limited number of earthquake scenarios to represent the complete seismic hazard. 
Importance sampling, clustering, and optimization-based methodologies have been applied in the literature for 
selecting a limited number of scenarios to represent the probability hazard in the region (for example, Jayaram 
and Baker 2010; Han and Davidson, 2012; Vaziri et al. 2012; Miller and Baker 2015; Manzour et al. 2016; 
Soleimani et al. 2021; Rosero‐Velásquez and Straub 2022). The typical objectives for selecting the 
representative scenarios have satisfied the occurrence probabilities of intensity measures for the various sites 
in the region of interest. However, there has been a limited focus on maintaining consistency with the joint 
distribution of various intensity measures. Maintaining the joint distribution of hazard intensity measures 
involves satisfying the spatial and inter-intensity measure correlations while selecting the hazard scenarios. 
Neglecting these spatial and inter-intensity measure correlations may lead to underestimating the seismic risk 
for the region. The limited literature attempting to address this gap reports challenges in dealing with the high 
dimensionality of the problem and the high computational cost (Kavvada et al. 2022). Furthermore, the 
performance of the current methods has often been worse when selecting small sets of scenarios (less than 
a hundred) and satisfying the consistency at high return periods, which is required for most planning and 
preparedness applications. 

This work proposes a formulation that incorporates spatial and inter-intensity measure correlations when 
selecting earthquake scenarios. The large number of sites controls the high dimensionality of the joint intensity 
measures in the region. However, the spatial correlation models indicate that it is possible to represent the 
regional seismic hazard with smaller dimensions (Loth and Baker 2013). Furthermore, Markhvida et al. (2018) 
show that the inter-intensity measure correlations can also be represented by a reduced set of dimensions 
using Principal Component Analysis (PCA) (Hotelling 1933). Exploiting these insights, in this paper, we use 
Principal Component Analysis to find a low-dimensional representation of the regional seismic intensity 
measures. We then use optimization to maintain consistency of the probabilities of occurrence for the principal 
components that implicitly improve performance in maintaining the correlations over space and among 
intensity measures. Then, to improve the performance of the optimization in selecting smaller sets of scenarios 
we use parameter tuning similar to LASSO (least absolute shrinkage and selection operator) in regression 
(Tibshirani 1996). We also identify improvements in weights and target return periods. We illustrate the 
proposed formulation for selecting earthquake scenarios for a region in Sonoma County, California. 
Preliminary results indicate that PCA-based optimization formulation performs better at selecting a smaller 
number of scenarios while improving computational efficiency and solution stability. 

The rest of the paper is organized into four sections. Following this introduction, Section 2 discusses some 
essential background and formulations required to explain the paper’s contributions. Section 3 presents the 
main methodological contribution of the paper; Section 4 then discusses the case study and presents some 
preliminary results. Finally, Section 5 summarises the paper and draws conclusions from the case study 
results. 

2. Background on seismic hazard mapping and scenario selection  
This section describes how the ground-motion intensity realizations are produced for a region. We also discuss 
the current methods for optimal scenario selection, which are conceptually similar to the proposed formulation 
and serve as a benchmark for comparison of improvements. 

2.1. Generating ground motion intensity maps  
For the selected region of interest, the extensive (close to accurate) representation of regional seismic hazard 
is first captured by a large number of selected scenarios that discretize the infinite-dimensional hazard. This 
set of scenarios is commonly known as the rupture forecast, which provides the probability of occurrence of 
various magnitudes, locations, and faulting types in the vicinity of the region. For example, the rupture forecast 
may provide 𝑄𝑄 number of scenarios with corresponding reoccurrence rates of 𝑤𝑤𝑞𝑞, where 𝑞𝑞 ∈ {1,2, … ,𝑄𝑄}. This 
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information is based on available seismological data (e.g., Uniform California Earthquake Rupture Forecast, 
Version 3 (UCERF3), 2013). 

Now, for each earthquake scenario in the extensive set of scenarios, the shaking intensity at each location of 
interest is characterized probabilistically using a ground motion model (GMM) (for example, Campbell and 
Bozorgnia 2014). Various types of ground motion models (for example, physics-based simulations or empirical 
equations) can be used to find the intensity measures at various locations. However, for regional risk 
assessment applications, the following type of empirical model is the most common, which we also use in this 
paper: 

 ln𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = ln𝑌𝑌�𝑖𝑖𝑖𝑖𝑖𝑖�𝑀𝑀𝑖𝑖,𝑅𝑅𝑖𝑖,𝑖𝑖 , … � + 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝜂𝜂𝑖𝑖𝑖𝑖 (1) 

where 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 is the realized ground motion intensity measure of type 𝑠𝑠 (for example, spectral acceleration, 𝑆𝑆𝑎𝑎 at 
a particular period), 𝑖𝑖 is the index for a location in the region, and 𝑗𝑗 is the ground motion intensity map index. 
𝑀𝑀𝑖𝑖 is the moment magnitude of the 𝑗𝑗th scenario, 𝑅𝑅𝑖𝑖𝑖𝑖 is a distance measure from the rupture location to the 
location 𝑖𝑖. If the initial earthquake rupture forecast provides 𝑄𝑄 earthquake scenarios and we sample 𝑏𝑏 spatially 
and inter-intensity measure correlated maps, then the index 𝑗𝑗 ∈ {1,2, … ,𝑚𝑚 }, where 𝑚𝑚 = 𝑄𝑄 × 𝑏𝑏. The variable, 
𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖 is the intra-event standard deviation for the joint normally distributed residual 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖. Similarly, 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 is the inter-
event standard deviation for the joint normally distributed residual 𝜂𝜂𝑖𝑖𝑖𝑖. The ground motion model (GMM) thus 
provides the median 𝑌𝑌�𝑖𝑖𝑖𝑖𝑖𝑖, and the standard deviation terms 𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖 and 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 for each of the intensity measures of 
interest, 𝑠𝑠, for each location, 𝑖𝑖. The residuals 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖  and 𝜂𝜂𝑖𝑖𝑖𝑖  are sampled using the spatial and inter-intensity 
measure correlation models such as Baker and Jayaram (2008), Loth and Baker (2013) and Markhvida et al. 
(2018) to obtain the intensity realizations 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖. 

Following the above explanation, if the number of uniformly sampled realizations is 𝑏𝑏 from each of the 𝑄𝑄 
scenarios, the recurrence rate associated with each of the realized maps is 𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑞𝑞 𝑏𝑏⁄ , 𝑗𝑗 ∈ {1,2, … ,𝑚𝑚} where 
𝑤𝑤𝑞𝑞 is the recurrence rate of the scenario 𝑞𝑞 as obtained from the earthquake rupture forecast. Combining 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 
and 𝑤𝑤𝑖𝑖, we can estimate for each site 𝑖𝑖 and intensity measure 𝑡𝑡, the marginal exceedance rate for an intensity, 
also known as the hazard curve λ(𝑌𝑌𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦) as 

 
λ𝑖𝑖𝑖𝑖(𝑌𝑌𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦) = �𝑤𝑤𝑖𝑖

𝑚𝑚

𝑖𝑖=1

.𝟏𝟏�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖≥𝑦𝑦� (2) 

where 𝟏𝟏{.} is an indicator function, which takes the value 1 if and only if the Boolean 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦, in the subscript 
is True, and zero otherwise. Hazard curves are traditionally used for site-specific probabilistic seismic hazard 
analysis for individual structures. As apparent from Equation 2, hazard curves only capture the marginal 
probability of exceedance of various intensity measures at any site and do not consider the joint distribution of 
intensities over several sites. 

2.2. Optimal selection of ground motion maps 
The goal of this analysis is to select a set of 𝑘𝑘 ground-motion intensity maps and assign to them an adjusted 
rate of occurrence 𝑤𝑤𝑖𝑖′ , so that the subset represents well the regional seismic hazard. Most current 
methodologies attempt to maintain the similarity in terms of the hazard curves defined in Equation 2. Here, we 
discuss a specific contribution by Miller and Baker (2015), which formulates the problem using convex 
optimization. Mathematically, we can write the problem as  

 minimize  

 
��‖diag(𝛌𝛌)−1(𝛌𝛌 − 𝚯𝚯𝑖𝑖𝑖𝑖𝐰𝐰) ‖1

𝑛𝑛

𝑖𝑖=1

𝑆𝑆

𝑖𝑖=1

 (3a) 

 subject to   

 
‖𝐰𝐰‖1 ≤�𝑤𝑤𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 (3b) 
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 𝟎𝟎 ≤ 𝐰𝐰 (3c) 

where the decision variable is the vector 𝐰𝐰 ∈ ℝ𝑚𝑚×1, each element of which is the adjusted recurrence rate 
𝑤𝑤𝑖𝑖′, 𝑗𝑗 ∈ {1,2, … ,𝑚𝑚}, ‖∙‖1is the 𝐿𝐿1 norm, i.e., the sum of absolute values of the elements in the vector. The vector 
𝛌𝛌 is the exceedance rates over which we are trying to minimize the deviation from the hazard curve. The 
elements of this vector 𝜆𝜆𝑟𝑟 , 𝑟𝑟 ∈ {1,2, … ,𝑅𝑅} are constants where 𝑅𝑅 is the total number of return periods of interest; 
for example, if the first return period of interest is 100, then the corresponding 𝜆𝜆1 would be 0.01. The matrix 
diag(𝛌𝛌)−1 is a matrix with the principal diagonal having the only non-zero values, which are (𝛌𝛌)−1. Here, 𝚯𝚯𝑖𝑖𝑖𝑖 ∈
ℝ𝑅𝑅×𝑚𝑚 is a binary matrix where each element is  

 𝜃𝜃𝑖𝑖𝑖𝑖;𝑟𝑟,𝑖𝑖 = 𝟏𝟏�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖≥𝑦𝑦�𝑖𝑖𝑖𝑖𝑖𝑖� (4) 

where 𝑖𝑖  is the index for a location in the region, 𝑖𝑖 ∈ {1,2, … ,𝑛𝑛} over which the objective function will be 
minimized, 𝑠𝑠 is the intensity measure. The constant 𝑦𝑦�𝑖𝑖𝑖𝑖𝑟𝑟 is the 𝑦𝑦 obtained from Equation 2, when we set the 
left-hand side to be one of the exceedance rates of interest, 𝜆𝜆𝑟𝑟, i.e., 𝑦𝑦�𝑖𝑖𝑖𝑖𝑟𝑟 corresponds to the intensity that has 
𝜆𝜆𝑟𝑟 as the exceedance rate for site 𝑖𝑖 and intensity measure 𝑠𝑠 from the extensively sampled set. Finally, the 
constraint ‖𝐰𝐰‖1 ≤ ∑ 𝑤𝑤𝑖𝑖𝑚𝑚

𝑖𝑖=1 , limits the total recurrence rate to be not more than the extensively sampled set, the 
constraint, 𝟎𝟎 ≤ 𝐰𝐰, ensures that the adjusted rates are non-negative. Miller and Baker then suggest using the 
𝑘𝑘 maps with the largest 𝑤𝑤𝑖𝑖′ as the representative set for the regional seismic hazard. 

The objective function in Equation (3a) minimizes the gaps between the exceedance rate curves from the 
extensively sampled set (notated as “fullset” in Figure 1) and from the subset; each site 𝑖𝑖 and intensity measure 
𝑠𝑠  in the objective function contributes a ground-motion intensity exceedance rate curve. The difference 
between the hazard curves for the intensity measures corresponding to 𝜆𝜆𝑟𝑟 are further multiplied by diag(𝛌𝛌)−1, 
which effectively performs a log transformation on the exceedance rate axis, i.e., highly weighting the errors 
at lower exceedance rates, which are typically of greater importance. The optimization objective function thus 
minimizes the weighted sum of vertical distances between the hazard curves at the 𝑅𝑅 number of exceedance 
rates that discretize the range of importance shown by the grey region Figure 1. 

 
Figure 1. Hazard curves from extensive set and subset of scenarios, with the area related to the minimization 

objective. The range of importance for exceedance rates may exclude events that do not cause significant 
damage and events that are too unlikely to occur or infeasible to plan for. 

3. Proposed formulation for optimal selection of ground motion maps 
The spatial variability in hazard intensities plays a significant role in estimating the regional seismic risk. Typical 
regional seismic risk analysis is performed on a large number of sites, which may correspond to the locations 
of thousands of buildings or infrastructure components within a region of interest. The number of locations, 𝑛𝑛, 
thus controls the dimensions of the joint distributions of intensity. This section discusses a weighted Principal 
Component analysis-based dimension reduction algorithm to reduce the computational cost. We then discuss 
the optimization formulation that translates the marginal intensity measure-based objective into the 
corresponding preference in terms of the principal components. 



WCEE2024  Sharma & Baker 

 
 

5 

3.1. Dimension reduction and correlation embedding 
As explained in section 2.1, the residuals 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝜂𝜂𝑖𝑖𝑖𝑖 follow normal distributions. Hence the ln𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 is a good 
candidate for dimension reduction using PCA. However, the samples of ln𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 over 𝑗𝑗 are not equally likely 
samples, instead, they are occurrences from random processes with occurrence rates 𝑤𝑤𝑖𝑖. So, we first obtain 
the weight of 𝑗𝑗th map in the PCA. The weight for the sample should be the relative likelihood of observing the 
sample given a hazard occurrence. For the case of multiple independent Poisson processes, say 𝑁𝑁𝑖𝑖(𝑡𝑡) with 
recurrence rates 𝑤𝑤𝑖𝑖, the encompassing Poisson process, 𝑁𝑁𝑇𝑇(𝑡𝑡) will have a reoccurrence rate 𝑤𝑤𝑇𝑇 = ∑ 𝑤𝑤𝑖𝑖𝑚𝑚

𝑖𝑖=1 . 
The relative likelihood of observing a sample from 𝑁𝑁𝑖𝑖(𝑡𝑡) can then be written as ℙ�𝑁𝑁𝑖𝑖(𝑡𝑡) = 1|𝑁𝑁𝑇𝑇(𝑡𝑡) = 1�, which 
can be shown to follow 

 ℙ�𝑁𝑁𝑖𝑖(𝑡𝑡) = 1|𝑁𝑁𝑇𝑇(𝑡𝑡) = 1� =
𝑤𝑤𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑚𝑚
𝑖𝑖=1

 (5) 

In other words, the weights for the various sample ground motion intensity maps are the recurrence rates 
normalized by their total. 

We can then use weighted PCA to reduce the distribution dimensions and embed the correlation into 
independent dimensions. We use the algorithm in Delchambre (2015) that uses a weighted covariance eigen 
decomposition approach to fit the weighted PCA (VanderPlas 2016). The weighted PCA finds a linear 
transformation of the data 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 represented by a matrix 𝐘𝐘 ∈ ℝ𝑚𝑚×𝑛𝑛𝑆𝑆, where 𝑚𝑚 is the number of rows and the 
number of intensity maps, 𝑛𝑛 is the number of sites, and 𝑆𝑆 is the number of intensity measures of interest. The 
row weights of these data are 𝑤𝑤𝑖𝑖 ∑ 𝑤𝑤𝑖𝑖𝑚𝑚

𝑖𝑖=1⁄ . We obtain, using weighted PCA, orthogonal principal components 
that we denote as 𝐗𝐗. Mathematically PCA finds parameters 𝚩𝚩, such that 

 𝐗𝐗 = 𝐘𝐘𝚩𝚩  (6) 

We denote the number of principal components we extract as 𝜈𝜈, i.e., from the complete 𝐗𝐗 ∈ ℝ𝑚𝑚×𝑛𝑛𝑆𝑆, we only 
keep 𝐗𝐗′ ∈ ℝ𝑚𝑚×𝜈𝜈 . The number of components required to describe the data can be chosen based on the 
proportion of variance explained by the first 𝜈𝜈.components. In general, the number of components required to 
represent the data is much smaller than the original dimensions, i.e., 𝜈𝜈 ≪ 𝑛𝑛𝑆𝑆, which leads to high computational 
savings. 

3.2. Optimal selection of ground motion maps in reduced dimensions 
Once we have an orthogonal and lower dimensional representation of the ground motion intensity maps, 
various optimization and clustering techniques become applicable to select the representative set of maps. 
The problem can be formulated quite similarly to the problem in the original space of sites, 𝑖𝑖, and intensity 
measure types, 𝑠𝑠. However, in this paper, we wanted to study the improvement we can expect based on the 
conceptual contribution of reduced dimensionality using weighted PCA. Hence, we modify a simple 
optimization algorithm described in Section 2.2 to work in the transformed space. The optimization formulation 
in the transformed space with some additional improvements is the following: 

 minimize  

 
�‖diag(𝝑𝝑𝑙𝑙)(𝛌𝛌𝑙𝑙 − 𝚯𝚯𝑙𝑙𝐰𝐰) ‖1

𝜈𝜈

𝑙𝑙=1

 (7a) 

 subject to  

 ‖𝐰𝐰‖1 ≤ 𝜔𝜔 (7b) 

 𝟎𝟎 ≤ 𝐰𝐰 (7c) 

where the decision variable remains the same, i.e., the vector 𝐰𝐰 ∈ ℝ𝑚𝑚×1, each element of which is the adjusted 
recurrence rate 𝑤𝑤𝑖𝑖′, 𝑗𝑗 ∈ {1,2, … ,𝑚𝑚}. The first difference, however, occurs in vectors 𝛌𝛌𝑙𝑙, which are now different 
for each component 𝐗𝐗𝑙𝑙 , 𝑙𝑙 ∈ {1,2, … , 𝜈𝜈}. Furthermore, the weights for the difference between the exceedance 
curves at various values of 𝜆𝜆𝑙𝑙 captured by 𝝑𝝑𝑙𝑙 are not the same as  𝛌𝛌𝑙𝑙, as in the original formulation. This is 
because the rate of exceedance for principal component values need not correspond to the preferences 
expressed by the exceedance rates in the original space. So, we need to ascertain what should be the 𝛌𝛌𝑙𝑙 and 
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𝝑𝝑𝑙𝑙 for a better selection of ground motion maps. Ascertaining these values rigorously is ongoing work, which 
can be based on the transformation obtained in Equation 6, and further modified by tuning for better 
performance on achieving consistency in hazard curves and correlation in the original space. However, as part 
of this paper we present a simple empirical approach that individually sets 𝛌𝛌𝑙𝑙 for each principal component. 
We first find for each map indexed 𝑗𝑗 the geometric mean, 𝜆𝜆̅𝑖𝑖𝑖𝑖�𝑌𝑌𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦𝑖𝑖�, over each site 𝑖𝑖 and intensity measure 
𝑠𝑠. We then find the 𝝑𝝑𝑙𝑙, for each principal component based on a linear fit between 𝜆𝜆̅𝑖𝑖𝑖𝑖�𝑌𝑌𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦𝑖𝑖� as the response 
and corresponding 𝜆𝜆̅𝑙𝑙�𝑋𝑋𝑙𝑙 ≥ 𝑥𝑥𝑖𝑖� as the predictor. The matrix, 𝚯𝚯𝑙𝑙 ∈ ℝ𝑅𝑅×𝑚𝑚 is a binary matrix, where each element 
is 

 𝜃𝜃𝑙𝑙;𝑟𝑟,𝑖𝑖 = 𝟏𝟏�𝑋𝑋𝑙𝑙𝑖𝑖≥𝑥𝑥�𝑙𝑙𝑖𝑖� (8) 

where 𝑙𝑙 is the principal component index, 𝑙𝑙 ∈ {1,2, … , 𝜈𝜈} over which the objective function will be minimized, 𝑡𝑡 
is the intensity measure. The constant 𝑥𝑥�𝑙𝑙𝑟𝑟 corresponds to the principal component value that has 𝜆𝜆𝑙𝑙𝑟𝑟 as the 
exceedance rate for component 𝑙𝑙 from the extensively sampled set. Finally, the constraint ‖𝐰𝐰‖1 ≤ 𝜔𝜔, creates 
a LASSO-like penalty for selecting a larger number of scenarios. Using 𝜔𝜔, we can tune for improving the 
performance while selecting small number of maps. 

3.3. Evaluation metrics 
Two types of evaluation metrics have been used in the literature for the selection of scenarios and 
corresponding ground motion maps. These metrics capture the performance in terms of error in capturing the 
hazard curves at all the sites in the region as well as the errors in correlations over pairs of sites and intensity 
measures. 

Mean Hazard Curve Error (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) 

Han and Davidson (2012) define the Hazard Curve Error, 𝑀𝑀𝑀𝑀𝑀𝑀 as the error in the hazard curve in terms of an 
intensity measure as the percentage of the ‘true’ value. The horizontal distance from the reduced set hazard 
curve to the ‘true’ hazard curve for site 𝑖𝑖 and exceedance rate 𝜆𝜆𝑟𝑟  by the true ground motion at site 𝑖𝑖 with an 
exceedance rate 𝜆𝜆𝑟𝑟. 

 
𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑟𝑟 =  

𝑦𝑦�𝑖𝑖𝑖𝑖𝑟𝑟 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑟𝑟
𝑦𝑦𝑖𝑖𝑖𝑖𝑟𝑟

× 100 (9) 

 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ���|𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑟𝑟|

𝑅𝑅

𝑟𝑟=1

𝑛𝑛

𝑖𝑖=1

𝑆𝑆

𝑖𝑖=1

 (10) 

where 𝑦𝑦�𝑖𝑖𝑖𝑖𝑟𝑟 and 𝑦𝑦𝑖𝑖𝑖𝑖𝑟𝑟 denote the intensity measures at site 𝑖𝑖 and intensity type 𝑠𝑠 for the exceedance rate 𝜆𝜆𝑟𝑟 for 
the hazard curves based on the subset and the extensively sampled set, respectively. 

Mean Absolute Correlation Error (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) 

Mean absolute correlation error is defined by Kavvada et al. (2022) by extending the definition of Mean Spatial 
Correlation Error (𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀) from Han and Davidson (2012) for multiple intensity measures. First, the weighted 
correlation coefficient between a pair of intensity measures, 𝑠𝑠1 and 𝑠𝑠2 over a pair of sites 𝑖𝑖1 and 𝑖𝑖2 is defined 
as 

 
𝜌𝜌𝑖𝑖1𝑖𝑖1𝑖𝑖2𝑖𝑖2 =  

cov�𝑌𝑌𝑖𝑖1𝑖𝑖1 ,𝑌𝑌𝑖𝑖2𝑖𝑖2�

�cov�𝑌𝑌𝑖𝑖1𝑖𝑖1 ,𝑌𝑌𝑖𝑖1𝑖𝑖1�cov�𝑌𝑌𝑖𝑖2𝑖𝑖2 ,𝑌𝑌𝑖𝑖2𝑖𝑖2�
 (11a) 

 where   

 
cov�𝑌𝑌𝑖𝑖1𝑖𝑖1 ,𝑌𝑌𝑖𝑖2𝑖𝑖2� =

∑ 𝑤𝑤𝑖𝑖�𝑌𝑌𝑖𝑖1𝑖𝑖1𝑖𝑖 − 𝔼𝔼𝑖𝑖�𝑌𝑌𝑖𝑖1𝑖𝑖1��
𝑚𝑚
𝑖𝑖=1 �𝑌𝑌𝑖𝑖2𝑖𝑖2𝑖𝑖 − 𝔼𝔼𝑖𝑖�𝑌𝑌𝑖𝑖2𝑖𝑖2��

∑ 𝑤𝑤𝑖𝑖𝑚𝑚
𝑖𝑖=1

 (11b) 

 
𝔼𝔼𝑖𝑖[𝑌𝑌𝑖𝑖𝑖𝑖] =

∑ 𝑤𝑤𝑖𝑖𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖𝑚𝑚
𝑖𝑖=1

 (11c) 
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where 𝑌𝑌𝑖𝑖𝑖𝑖 is the intensity measure 𝑠𝑠 at site 𝑖𝑖 and 𝑤𝑤𝑖𝑖  is the recurrence rate of the ground motion map  𝑗𝑗.The 
correlation error 𝑀𝑀𝑀𝑀 between a pair of intensity measures, 𝑠𝑠1 and 𝑠𝑠2 over a pair of sites 𝑖𝑖1 and 𝑖𝑖2is defined as 

 𝑀𝑀𝑀𝑀𝑖𝑖1𝑖𝑖1𝑖𝑖2𝑖𝑖2 = 𝜌𝜌𝑖𝑖1𝑖𝑖1𝑖𝑖2𝑖𝑖2 − 𝜌𝜌�𝑖𝑖1𝑖𝑖1𝑖𝑖2𝑖𝑖2 (12) 

where 𝜌𝜌�𝑖𝑖1𝑖𝑖1𝑖𝑖2𝑖𝑖2 and 𝜌𝜌𝑖𝑖1𝑖𝑖1𝑖𝑖2𝑖𝑖2 denote the correlation coefficients for site pairs  𝑖𝑖1 and 𝑖𝑖2 and intensity measures, 𝑠𝑠1 
and 𝑠𝑠2 based on the subset and the extensively sampled set of ground motion maps, respectively. 

 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =

∑ ∑ ∑ ∑ �𝑀𝑀𝑀𝑀𝑖𝑖1𝑖𝑖1𝑖𝑖2𝑖𝑖2�
𝑆𝑆
𝑖𝑖2

𝑛𝑛
𝑖𝑖2

𝑆𝑆
𝑖𝑖1

𝑛𝑛
𝑖𝑖1

(𝑛𝑛𝑆𝑆)2  (13) 

4. Case Study and Preliminary Results 
We use a region (Figure 2) in Sonoma County, California to illustrate the proposed formulation. We divide the 
region into 2 km ×  2 km grid sites, which gives us 𝑛𝑛 = 380 sites. For intensity measures, we use Peak Ground 
Acceleration (PGA), i.e., 𝑆𝑆 = 1. For the optimization, we fix the relevant range of exceedance rates to be 10−1.5 
to 10−4. To get the initial earthquake rupture forecast, we use the OpenSHA event set generator application 
(Field et al. 2003) based on the Uniform California Earthquake Rupture Forecast (UCERF3 2013) with a 
wrapper code written in Python by the authors (Sharma 2023). For simplicity, we use a constant 𝑉𝑉𝑖𝑖30  of 
760 m/s . As the ground motion model we use Campbell and Bozorgnia (2014). We model the spatial 
correlation using Baker and Jayaram (2008) and Loth and Baker (2013). The initial ERF returns 𝑄𝑄 = 2091 
scenarios, and we then uniformly sample 𝑏𝑏 = 2 maps from each of the 2091 scenarios. 

 
Figure 2. Region of interest. 

4.1. Weighted PCA 
The PGA data for 𝑆𝑆 =  380  sites and 𝑄𝑄 =  2091  scenarios with 𝑏𝑏 =  2  sample maps each, result in 𝐘𝐘 ∈
ℝ4182×380. We then use weighted PCA and extract 8 principal components. Figure 3 shows the explained 
variance ratio for the principal components. 

 
Figure 3. Explained variance ratio for principal components. 
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We see that the first principal component explains more than 95% of the total variance, which means that the 
380 sites have a large amount of redundant information regarding the spatial variability of PGA. We note, 
however, that the study region is only ~40 × 40 km, so most locations have highly correlated PGA values. A 
larger study region with lower spatial correlation, or a study with multiple intensity measures, would have 
greater contributions from more principal components. 

4.2. PCA-based convex optimization 
Now, for the optimal selection of the ground motion maps, we need to specify the values of 𝝑𝝑𝑙𝑙 and  𝛌𝛌𝑙𝑙. For the 
same, we plot the geometric mean for exceedance rates 𝜆𝜆̅𝑖𝑖𝑖𝑖�𝑌𝑌𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦𝑖𝑖� as the response and corresponding 
exceedance rate of the principal component 𝜆𝜆𝑙𝑙�𝑋𝑋𝑙𝑙 ≥ 𝑥𝑥𝑖𝑖�  in Figure 4. The geometric mean 𝜆𝜆̅𝑖𝑖𝑖𝑖�𝑌𝑌𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦𝑖𝑖� 
captures the weight pattern for each map considering all the sites, comparing that with 𝜆𝜆𝑙𝑙�𝑋𝑋𝑙𝑙 ≥ 𝑥𝑥𝑖𝑖� we can 
mimic the same weight pattern based on the principal component values. We observe that for the first principal 
component, the exceedance rate of the principal component closely follows the 1: 1 line with the geometric 
mean of the exceedance rate for the PGA for each site. In comparison, all the rest of the principal components 
are almost uncorrelated. 

 
Figure 4. Mean exceedance rates in original space versus exceedance rates of principal components. 

Hence for the current case study, we use for 𝑙𝑙 = 1, 𝝑𝝑𝑙𝑙 = (𝛌𝛌𝑙𝑙)−1 and we use 𝛌𝛌𝑙𝑙 to follow 50 log scale distributed 
points over the range 10−4  to 10−1.5 . Whereas for 𝑙𝑙 ∈ {2, … ,8}, we use constant 𝝑𝝑𝑙𝑙  as obtained from the 
intercepts of the linear fits in Figure 4, and we symmetrically distribute 𝛌𝛌𝑙𝑙 to linearly cover the quantiles of the 
principal component distributions at 50 points. 

4.3. Evaluation metrics 
We perform the original convex optimization from Section 2.2 and the updated weighted PCA-based 
optimization and compare their performance. 
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Figure 5. Mean hazard curve and absolute correlation error comparison for the two optimization formulations. 
The Marginal Convex optimization results are obtained from scenario selection using Equation 3, and PCA-

based Convex optimization results are obtained from scenario selection using Equation 7. 

From the preliminary results, we observe that PCA-based optimization shows substantial improvements 
compared to the original convex optimization formulation. The proposed formulation provides better and more 
stable performance in terms of the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 for low number of ground motion maps. For 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, again the PCA-
based optimization performs better for a low number of ground motion maps, with nearly no difference when 
the number of selected maps are more than 100. We also note that we studied the impact of PCA-based 
improvements in a convex optimization formulation, and hence the performance for 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 in absolute terms 
is not desirable. However, the proposed dimension reduction and correlation embedding novelties in the paper 
are equally applicable for other non-convex optimization and clustering based algorithms. Finally, because we 
used convex optimization the formulations discussed in the paper is highly efficient with requiring few seconds 
to obtain PCA based results for a selected set of hyperparameters. 

5. Conclusion 
This paper developed a computationally efficient formulation for selecting a limited number of earthquake 
scenarios that can represent the complete seismic hazard in a region. The proposed formulation can 
incorporate spatial and inter-intensity measure correlations while selecting earthquake scenarios to help 
maintain probabilistic consistency in scenario-based assessment of regional seismic risk. Specifically, the 
paper proposed a weighted PCA-based dimension reduction approach combined with convex optimization to 
select earthquake ground motion maps. Compared with a marginal convex optimization formulation that 
directly minimizes the sites’ hazard curve errors, the weighted PCA step reduces the problem’s dimensionality 
while embedding the correlations into orthogonal principal components. The paper also made improvements 
to the convex optimization constraints in the form of hyperparameter tuning similar to LASSO regression to 
improve the optimization performance for a lower number of maps. The paper then provided a case study to 
illustrate the proposed formulation and provide preliminary results for a comparative analysis of the 
formulation’s performance in benchmark metrics from the literature. The proposed formulation shows 
substantial performance improvement for both the marginal distribution fit in terms of the Mean Hazard Curve 
Error and capturing correlation in terms of the Mean Absolute Correlation Error. The proposed formulation is 
computationally efficient, requiring a few seconds to select the ground motion maps. Furthermore, the 
dimension reduction and correlation embedding novelties in the paper are equally applicable for other non-
convex optimization and clustering-based algorithms, which can be used to improve the efficiency and 
accuracy of other algorithms better than convex optimization. The code and case study data presented in the 
paper are available at the authors’ GitHub accounts (Sharma 2023). 
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